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Abstract: 

Risk associated with liquefaction caused by earthquakes requires a better understanding of 

the coupling between pore pressure time histories and ground motion time histories. This can be 

best achieved by investigating the coupling as a function of the frequency content of the seismic 

signals. The 2010 El Mayor-Cucapah (Baja California) earthquake (M 7.2) provides a remarkable 

opportunity to undertake such an investigation. The event was well recorded at the 

NEES@UCSB Wildlife station located 110 km from the hypocenter. The station is equipped with 

three-component strong-motion accelerometers at the surface and in boreholes at various depths 

and with pore pressure transducers located in a saturated, liquefiable layer. The recorded pore 

pressure and ground motion time histories are both characterized by a frequency content that is a 

function of time. Due to this property, investigation of the seismic signals is best achieved by 

using two complementary wavelet-derived tools. The wavelet correlation quantifies the degree of 

linear (or quasi-linear) dependence between the two signal wavelet coefficients as a function of 

the frequency. The square norm ratio measures the relative contribution of the wavelet 

coefficients to the signals as a function of the frequency and identifies the dominant wavelet 

coefficients necessary to reconstruct the signal. The wavelet-derived correlations are computed 

by matching different pairs of seismic signals, including ground motion derived velocity and 

displacement.  A major finding of this study is the observation of a range of frequencies where 

wavelet coefficients of pore pressure are relatively well correlated to the wavelet coefficients of 

the vertical component of the velocity while the estimated square norm ratios of both wavelet 

coefficients follow a similar unimodal curve in the frequency domain.  Results of this study may 

provide the basis to model the coupling between the pore pressure and the ground motion.  
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REPORT 

1. INTRODUCTION 

Pore pressure built up during an earthquake and the hazard associated with soil 

liquefaction present a major challenge for our society, as was dramatically displayed during the 

2011 Higashi Nihon Daishinsai (Tohoku-oki, Japan) earthquake. Liquefaction is capable of 

causing considerable damage (e.g., Seed and Idriss, 1971; Wang and Manga, 2010). The 

causative mechanism responsible for liquefaction is mainly earthquake-related and is 

“invariability associated with high pore-water pressure.” (Wang and Manga, 2010; p. 7).  

Peak ground acceleration (PGA) is the primary parameter used by geotechnical engineers 

to estimate hazard associated with liquefaction (Seed and Idriss, 1971). Holzer et al. (2009) 

discuss the computation of liquefaction probability curves that are conditioned on PGA and 

earthquake magnitude. Other parameters and mechanisms have also been discussed in the 

literature. 

 Midoriwaka and Wakamatsu (1988) found a stronger correlation between liquefaction 

and the peak ground velocity (PGV) rather than PGA. This lead Kostadinov and Towhata (2002) 

to use PGV as a parameter to identify liquefaction in earthquake records. Wong and Wang (2007) 

reached a similar conclusion using data generated during the 1999 Chi-Chi earthquake. 

Computation of the correlation between various ground motion metrics and occurrence of 

liquefaction and ground water level change indicates a higher correlation between low-frequency 

motion metrics and occurrence of liquefaction and ground water level change. Wang and Manga 

(2010, p. 24) concur that the “liquefaction may be more sensitive to the low frequency 

components of the ground motions”. 

To account for the pore pressure fluctuations recorded during the 1980 Mammoth Lakes, 

California, earthquake, Mavko and Harp (1984) developed a first-order model relating the pore 

pressure to the ground motion. Their model is based on the assumptions of elastic wave 

propagation coupled to the hypothesis that saturated sediments can be approximated by a linear 

elastic solid. During the S-wave arrivals, the model predicts a linear relationship between the pore 

pressure and the surface ground velocity. 

During the 2001 Nisqually, Washington, earthquake, liquefaction was reported near 

several sites with ground motion records. At these sites, Frankel et al. (2002) observed 

substantial amplifications in the 1–20 Hz frequency band for several sites (see Figures 5 and 6 in 

Frankel et al., 2002), and at lower frequencies at one site (see Figure 6 in Frankel et al., 2002.). 

In Frankel et al. (2002), site amplifications are attributed to nonlinear effects. They also suggest a 

parallel between nonlinear behavior at a site and the likelihood of liquefaction.  

Recently, Holzer and Youd (2007) have undertaken an investigation of the pore pressure 

and ground motion acceleration recorded at the USGS Wildlife Station 5210 during the 1987 

Superstition Hills earthquake. They argue that although early pore pressure build-up is associated 

with early high frequency oscillations present in the ground motion record, liquefaction most 

likely resulted from late arrivals of low frequency oscillations in the ground motion (for instance 

Love waves). The computed shear strain time history for the 1987 earthquake is characterized by 

a large low frequency fluctuation late in the signal (see Figure 7 in Holzer and Youd, 2007). A 

similar computation is discussed in Zeghal and Elgamal (1994).  

Recent investigations discussed in Wang et al. (2006), Wang (2007), and Wang and 

Manga (2010) argued that undrained consolidation could be understood as the causal mechanism 
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for earthquake induced liquefaction, but only for sites located in the near field. The basis for this 

conclusion is a comparison between the minimum energy needed for the occurrence of 

liquefaction and the seismic energy available at a given site. The seismic energy is approximated 

by the square of the PGV. Based on this calculation, there is a direct relationship between the 

distribution of PGV values and the occurrence of liquefaction. 

Integration of the acceleration time history, to calculate the ground velocity, reduces the 

amount of high frequency energy in the signal. The reduction of high frequency energy is also 

seen in the computed shear strain illustrated in Figure 7 of Holzer and Youd (2007). Shear strain 

is proportional to ground displacement, which is calculated with the double integration of the 

acceleration time history. Thus, the overall picture portrayed in some of the papers reviewed 

above suggests that pore pressure fluctuations, and thus the likelihood of liquefaction, is more 

sensitive to low frequency content in the seismic waves than to the high frequency content usually 

associated with PGA. 

In the book “Earthquakes and Water”, Wang and Manga (2010) provide a substantial 

review of the available literature on the dependency of liquefaction on frequency. (Note that the 

materials discussed above are partially based on materials discussed in this book.) Wang and 

Manga (2010, p. 29) summarize well the current understanding of the relationship between pore 

pressure data and ground motion -or parameters derived from the ground motion: 

“An unresolved issue is the complex relationship between liquefaction and the 

frequency of seismic waves. Current results from the field and laboratories are in 

conflict. Future work is needed to resolve these conflicts.” 

The objective of this paper is to answer the call for “future work” by proposing a wavelet-

based analysis to investigate the “complex relationship” between recorded pore pressure and 

ground motion time histories.  

 

2. PORE PRESSURE AND GROUND MOTION RECORDED AT THE USGS WILDLIFE 

STATION 5210 

 
In this paper, the investigation is focused on ground motion and pore pressure time 

histories recorded during the 2010 Sierra el Mayor-Cucapah (Baja California) Mw 7.2 earthquake 

at the USGS Wildlife station 5210, see Figure 2.1. The station is located at 110 km from the 

hypocenter, as shown in Figure 2.2. The station is equipped with three-component strong-motion 

accelerometers at the surface and in boreholes, at various depths and with pore pressure 

transducers located in a saturated, liquefiable layer.  Instrumentation at Wildlife station was 

updated in 2004; see Steidl and Seale (2010) and Youd et al. (2004) for additional details. Pore 

pressure time histories recorded during the 2010 Sierra el Mayor-Cucapah (Baja California) 

earthquake are unique and unprecedented in their resolution of the time-dependent variation. Pore 

pressure and ground motion records are illustrated in Figures 2.3 and 2.4. 
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Figure 2.1: Schematic illustrations of the USGS Wildlife station (5210) showing the 

sediment layers and the location of the instruments. Pore pressure transducers are located 

at depths of 3.4 m, 4.4 m and 5.7 m with accelerometers at 0.0 m, 3.0 m and 7.6 m at the 

USGS Wildlife station. 

 

This site was originally selected for its proximity to major faults and its potential for 

liquefaction during strong shaking. Acceleration and pore-pressure time histories from the 1987 

Superstition Hills earthquake were recorded at the Wildlife station 5210. Those records (along 

with those form Kushiro Port, Iai et al., 1995) are the basis for the current limited understanding 

of the complex relationship between the ground shaking and pore pressure build-up (Holzer and 

al., 1989; Zeghal and Elgamal, 1994 and Holzer and Youd, 2007). 

 

 
 

Figure 2.2: LIDAR image of the epicenter of the El Mayor-Cucapah event and the 

Wildlife Liquefaction Array. 
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Figure 2.3: From top to bottom, pore pressure time histories recorded at different depths 

of the USGS Wildlife station (5210) –see Figure 1. Note that the frequency content is 

time dependent. More specifically, note the sharp transition in frequency content around 

70 sec.  Observations of high frequency waves are limited to the first 70 sec.  Pore 

pressure is recorded at 200 Hz. In the plots above, the data are sampled at 20 Hz.  
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Figure 2.4: Same as Figure 2.2, except for the EW components of the acceleration  time 

histories 

   

aEW
. Note that the frequency content is also time dependent, but the transition in 

frequency content is not as sudden as the one reported in Figure 2.3. 

 

Accelerations at 5210 are recorded in boreholes and at the surface with Kinetmetrics 

Episenor Force-Balance Accelerometers. Pore pressure is recorded with ParoScientific Pressure 

Transducers that are installed at the bottom of the boreholes. Signals from these instruments are 

sampled with Quanterra Q330 digitzers at 200, 40, and 1 samples/second.  The data are 
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transmitted through the UCSD wireless network HPWren to UCSB. The data are made available 

through the NEES@UCSB website at http://nees.ucsb.edu. 

 

3. FOURIER ANALYSIS AND ITS LIMITATIONS 

Given a pair of recorded signals, for instance ground motion and pore pressure time 

series, with the same causal mechanism –in our case seismic radiation– a question consists in 

determining the fundamental properties shared by the pair of records. Usually, investigations of 

the fundamental properties are done in the amplitude, time, and frequency domains. Traditional 

tools used to perform these investigations are often based on Fourier analysis. Due to intrinsic 

limitations, Fourier analysis may not be the proper tool to investigate signals characterized by 

transient and/or intermittent features, as explained by Mallat (1998) and Papandreou-Suppappola 

(2003). An illustration of transient features is given by a signal with a frequency content that 

gradually increases or vanishes with time, for instance the Doppler effect, as shown in examples 

by Riera-Guasp et al. (2008). Intermittent features are best exemplified by the complex time 

evolution of the frequency content in turbulent signals (see Chapter 4 in Addison, 2002).  

Consider a signal with a distribution of frequency content that is time independent (see 

Figure 3.1, top). In the Fourier domain, the Fourier transform  of this signal provides the 

distribution of frequencies included in the signal.  The Fourier amplitude , or Fourier 

spectrum , at a given frequency 

   

n measure the contribution of the corresponding 

frequency component (a sine wave) to the signal (see Figure 3.1).  For a signal with a time 

independent frequency distribution, the relationship between the amplitude of the spectrum curve 

in the Fourier domain is completely and uniquely determined by the amplitude of the 

corresponding frequency component in the physical domain. 

Alternatively, consider a signal with time varying frequency content (see Figure 3.1, 

center and bottom). In the Fourier domain, the frequency content is also given by the Fourier 

transform  of the signal.  However, for a signal with a time varying frequency, the Fourier 

amplitude  at a given frequency 

   

n is now a function of the amplitude and of the durations 

of the corresponding frequency component in the physical domain.  Thus the relationship 

between the amplitude of the spectrum curve in the Fourier domain is neither completely nor 

uniquely determined by the amplitude of the corresponding frequency component in the physical 

domain. As pointed out in Gurley and Kareem (1999, p. 149), Fourier analysis of a signal with a 

time varying frequency “cannot describe the local transient features due to averaging over the 

duration of the signal”. The analysis and the interpretation of the distribution of frequencies in the 

Fourier domain is thus greatly complicated for a signal characterized by a frequency content with 

a transient or intermittent time dependency. 

In the literature, a signal without or with time varying frequency content is sometimes 

referenced as a stationary or non-stationary signal (see Mallat, 1998; Goumas et al., 2002; and 

Papandreou-Suppappola, 2003).  In statistical analysis, a process is strictly stationary if its 

statistical properties are invariant under translation (see Papoulis, 1991). To avoid confusion 

between the two definitions of stationary, which are not necessary mutually exclusive, in this 

paper we adopt for stationary or non-stationary signals the definition used in statistics. 
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Figure 3.1: For a signal that can be understood as a sum of sinusoids, the spectrum 

amplitude  at a given frequency 

   

n is uniquely determined by the amplitude of the 

sinusoid at the corresponding frequency in the physical domain (see top figure). This 

property is observed as long as the duration of all the sinusoids corresponds to the 

duration of the signal.  When the duration of the sinusoids doesn't correspond to the 

duration of the amplitude, the spectrum amplitude at a given frequency depends on the 

sinusoid amplitude but also on the duration of the sinusoid in the time domain. The 

duration and amplitude dependence are both affecting the spectrum amplitude. The 

relationship between a sinusoid amplitude at a given frequency in the physical domain 

and the spectrum amplitude of the same frequency in the Fourier domain is not uniquely 

determined anymore.  This is illustrated in the two last rows of the figure above. 
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Signals recorded during an earthquake are often characterized by time varying frequency 

content, as seen in Figures 2.3 and 2.4. Other observations of ground motion time histories with 

time varying frequency content are discussed in Frankel et al. (2002); Bonilla et al. (2005); and 

Holzer and Youd (2007).  Signals with time varying frequency content recorded during 

aftershocks following the 3 September 2010 M 7.1 Darfield earthquake are reported in Cochran et 

al., (2011). These observations suggest that recorded seismic signals qualified as intermittent! 

The Fourier spectra of the pore pressure and East-West (EW) component of the ground 

motion time series recorded at 5210 during the El Mayor event are computed and illustrated in 

Figures 3.2 and 3.3. In all cases, the spectra are computed for a time window of 327.675 seconds 

and for signals recorded at different depths. 

At every depth, the amplitude spectra  of the pore pressure 

   

p are characterized by 

a sharp discontinuity around 0.2 Hz.  For frequencies smaller than 0.2 Hz, the spectra attenuate 

according to a power law. The same functional behavior is observed at higher frequencies. To 

capture this behavior, we assume the following relationship between and the frequency 

   

n: 

  (3.1) 

where 

   

hn < 0.2
 and 

   

hn > 0.2
 are the exponents controlling the power law decay for the frequency 

intervals specified in Eq. (3.1).  The curves shown in Figure 3.2 are fitted with the expression 

given in Eq. (3.1). The computed values for the two exponents 

   

hn < 0.2
 and 

   

hn > 0.2
 are reported in 

Figure 3.2. As for the discontinuity observed around 

  

n » 0.2 Hz, there is no simple explanation 

for it.  Future research is needed to determine the effect of the time-dependent frequency to this 

observation. That is, we need to investigate how much the discontinuity depends on the 

significant contribution of high frequency waves to the pore pressure time series during the first 

70 seconds (see Figure 2.3). 

 For the EW acceleration components, the shapes of the amplitude spectra  are 

more complicated than those reported in Figure 3.2.  There is no simple functional representation 

of the distribution of frequency in the Fourier domain. At low frequency, the spectrum is mainly 

controlled by the source complexity. Note that for the EW components recorded at 3 and 7.7 m, 

there are depletions of the spectra at several frequencies in the range of 1 to 20 Hz.  The same 

observations hold for the North-South (NS) components of the ground motion and to some 

extend to the vertical components of the ground motions. Depletions of the spectra may result 

from the intermittent nature of the frequency content in these frequency ranges. 

To study the properties shared by two signals, one can compute the cross spectrum of the 

two signals.  Here we consider three examples: the cross-spectrum between the pore pressure 

time series and each of the three components of ground motion recorded at the same depth 

(around 3 m depth, see Figure 3.4). The amplitude of the cross-spectrum is given by the 

following expression: 

  (3.2) 

where  is the complex conjugate of the Fourier transform of the pore pressure time history 

and  is the Fourier transform of the EW acceleration component.  According to Misiti et 



 10 

al. (2007, p. 286), “Crossed spectra, when taken as a whole, are difficult to interpret”. The cross-

spectrum curves illustrated in Figures 3.4 mostly corroborate this observation. 

 

 

 

 

 

Figure 3.2:  From top to bottom, the spectral curves  of the pore pressure time 

histories

   

p reported in Figure 2.2. The black and red straight lines represent the best fit to 

the expression (2.1). The values of the exponents 

  

hn<0.2
 and 

  

hn>0.2
 are reported in the left 

bottom corner. 
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Figure 3.3:  From top to bottom, the spectral curves  of the EW component of 

the acceleration 

   

aEW
 reported in Figure 2.4. 
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Figure 3.4: The top plot represents the amplitude of the cross-spectrum of the pore 

pressure time series observed at 3.4 m with the EW component of the acceleration 

recorded at 3 m. The cross-spectrum combine some of the features reported for 

(see top plot in Figure 3.2) and  (see middle plot in Figure 3.3).  This is 

more obvious at low frequencies.  Also note the depletions of the spectral curves at 

several frequencies in the range of 1 to 20 Hz. The amplitude of the cross-spectrum of the 

pore pressure time series observed at 3.4 m with the NS component of the acceleration 

recorded at 3 m. is given on the second plot. The amplitude of the cross-spectrum of the 

pore pressure time series observed at 3.4 m with the vertical component of the 

acceleration recorded at 3 m. is illustrated in the bottom plot. 



 13 

4. WAVELET FORMALISM  

4.1 A brief introduction 

The wavelet representation is the natural approach to investigate time histories with a 

frequency content that varies in time. Such is the case for the recorded pore pressure and ground 

motion recorded during the 2010 Sierra el Mayor-Cucapah at the USGS Wildlife station (see 

Figures 2.3 and 2.4).  

A wavelet transform can be understood as the convolution of the signal with a mother 

wavelet function. The mother wavelet 

  

y (t -b) a( ) is characterized by two parameters. One 

parameter 

  

a controls the dilatation (or contraction) of the width of the mother wavelet while the 

second parameter 

  

b controls the translation and thus the position of the mother wavelet in the 

signal. The wavelet transform decomposes the signal at different resolutions (or frequencies) 

while preserving important time dependent features such as phase arrivals. Wavelet coefficients 

result from computing the wavelet transform of a given signal and representing the signal in the 

scale-time domain or frequency-time domain. High-scale coefficients capture the fine structure 

embedded in the signal while low-scale coefficients characterize its coarse features. Wavelet 

transform “offers the flexibility of a genuine mathematical microscope that can focus on details 

on the signal at arbitrary positions and scales” (Sornette, 2004, p. 146).  

Wavelets can be divided into two classes: continuous and discrete. Baker (2007) 

discussed the advantages and disadvantages of using continuous versus discrete wavelet 

transformations. For the project discussed here, we decompose the seismic signals using 

orthogonal discrete wavelet transform. For an orthogonal basis, the signal information captured 

by one wavelet coefficient doesn’t overlap the information captured by the other coefficients. Just 

as for the Fourier transform, the square norm of the signal is preserved, i.e., the square norm of 

all the wavelet coefficients is equal to the square norm of the original signal. These two features 

are necessary to properly compare the two signals and to quantify the interdependence between 

these two signals in the time-frequency domain.  

A large literature is available that goes beyond the brief overview of wavelet properties 

presented here: Chui (1992); Ogden (1997); and Mallat (1998). There is also a manuscript 

dedicated to discrete wavelet transforms (Jensen and la Cour-Harbo, 2001). A recent review of 

the applications of wavelets in seismology is given in D’Auria et al. (2010) and references 

therein.   

 

4.2 The Haar basis 

For each signal considered in this study, the orthogonal wavelet basis is given by the Haar 

wavelet (corresponding to a Daubechies wavelet of order 0).  The Haar wavelet (or mother) 

function is given by this expression: 

 

   

y t( ) =

1 0 £ t <1/2

-1 1/ 2 £ t < 1

0 otherwise

ì 

í 
ï 

î 
ï 

 (4.1) 
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and the Haar scaling (or father) function is given by this expression: 

 

   

j(t) =
1 0 £ t <1

0 otherwise

ì 
í 
î 

 (4.2) 

Figure 4.1 shows a schematic illustration of the wavelet decomposition, the Haar wavelet 

and Haar scaling functions. When convolved to a function, the wavelet and scaling functions of 

the Haar basis can easily be interpreted as a moving difference operator and a moving averaging 

operator. These operators respectively correspond to high pass and low pass filters. The 

differencing characteristics of the Haar wavelet function make it a good choice to analyze 

intermittent signals such as the velocity components of turbulent flows (Katul et al., 1994). Since 

the wavelet is of finite width, it has a compact support. According to Katul and Parlange (1995), 

this property is very useful in quantifying the rapid variations observed in turbulent signals.  Note 

that although the Haar basis is compact in the time domain, it is not compact in the Fourier 

domain since it decays very slowly as 

   

n -1. 

Haar wavelets have been used to investigate turbulent flows in the time and frequency 

domains (or space and wavenumber domains), see Menevau (1991), Katul et al. (1994); Katul 

and Parlange (1995); Kulkarni et al (1999); Papanicolaou and Solna (2003). Additional 

applications of the Haar wavelet can be found in the literature (Unser, 1995; Lindsay et al., 1996; 

Bruce et al., 2002; and Misiti et al., 2007). Closer to seismology, Tibuleac and Herrin (1999) and 

Tibuleac et al. (2003) used the Haar wavelet for phase identification. 

 

4.3 From wavelet scale to the Fourier frequency 

Wavelet coefficients are displayed in Figure 4.1.  Two parameters are needed to specify 

the functional dependence of the wavelet coefficients 

   

d i, j f( ) of the function 

   

f : the scale and the 

time position at a given scale.  On a dyadic grid, the scale is given by 

   

2 i and the time position at 

the 

   

ith scale is given by , where 

   

i and 

   

j are positive integers and  is the sampling 

time of the signal. On a typical scalogram, a 2D graphic representation of the wavelet 

coefficients, the horizontal axis shows the position in time while the vertical axis accounts for the 

scale either using the scale itself 

   

2 i or the scale level (or index) 

   

i.  It is sometimes more 

convenient to describe the distribution of the wavelet coefficients as a function of time and 

frequency (or space and wavenumber).  For instance, in many investigations, it is necessary to 

compare the Fourier spectrum at a given frequency to the wavelet spectrum at a given scale (for 

details see Menevau, 1991; Katul et al., 1994; Katul and Parlange, 1995; and Addison, 2002). 

The comparison requires the calibration of the wavelet scale spectrum with the Fourier frequency 

or wavenumber. The calibration involves a reference period, or time interval, or a frequency.  It 

can also be represented by a scale length or wavenumber.  A common (and perhaps the simplest) 

definition adopted for the reference frequency 

   

n S
 is given by the following expression:  

  (4.3) 

where  is the sampling time.  The Fourier frequency 

   

n i
 associated with the wavelet scale 

   

2 i is 

given by the following expression: 

  (4.4) 
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The calibration given by Eq. (4.4) is often used in the literature, see Menevau (1991), Katul et al. 

(1994); Katul and Parlange (1995); Lindsay et al. (1996); Wilkinson and Cox (1996); Smith et al. 

(1998); and Papanicolaou and Solna (2003). This is also the relationship adopted in this paper. 

Another relation is discussed in Riera-Guasp et al. (2008).  A frequency band is 

associated to a given scale level 

   

i by the following relation: 

 

 

  

2-(i+1)nS,2
-inS[ ] i =1, 2, ... (4.5) 

 

Figure 4.1: Schematic illustration of discrete wavelet decomposition.  The original time 

   

t dependent signal (purple) with a resolution  is decomposed into two sets of 

coefficients, each with a resolution . Convolution of the original signal with the 

wavelet function 

  

y(t) gives the wavelet coefficients (blue). The wavelet coefficients are 

also denoted details or detail coefficients. The wavelet coefficient measures the amount of 

fluctuations in the signal about a given location 

   

t (Ogden, 1997). Convolution of the 

original signal with the scaling function 

   

j t( ) gives the coarser coefficients (red). The 

coarser coefficients are also called approximations, approximation coefficients or scaling 

function coefficients. The same operations are repeated to the coarser version of the signal 

(red) to get two new sets of wavelet coefficients at a lower resolution.  The left side of the 

diagram schematically represents these operations.  Note that at coarser resolutions the 

number of coefficients decreases. All the results discussed in this paper are based on the 

Haar wavelet transform. The scaling and wavelet functions for the Haar basis are 

illustrated in the schema.  
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The choice of a reference frequency is not unique. The choice can also be based on the 

properties of the Fourier spectrum of the mother wavelet . For instance, Addison (2002) 

suggests alternatives such as the spectral peak frequency or the pass band of the mother wavelet. 

The spectral peak frequency is the frequency for which  has a maximum, while the 

following relation defines the pass band of the mother wavelet: 

 

  (4.6) 

To relate the wavelet scale to the Fourier spectrum, Schneider and Farge (2001) define a mean 

wavenumber that is adapted to the time-frequency domain by defining the mean frequency 

associated to :   

  (4.7) 

Additional methods to derive a relationship between the wavelet scale and the Fourier frequency 

(or wavenumber) are discussed in Collineau and Brunet (1993) and Meyer et al. (1993).  

According to Addison (2002), implementing an alternative reference frequency 

   

nA is 

achieved by transforming Eq. (4.4) into .  This transformation is perhaps 

numerically correct but it is problematic since 

   

n i
 is now proportional to the product of 

   

n A
 by 

   

n S
!   

For the Haar basis, the integral in the numerator of Eq. (4.6) and the integrals in the 

numerator and denominator of Eq. (4.7) don’t converge. In the frequency domain, the spectral 

peak frequency for the Haar wavelet is equal to 0.74 and thus close to 1.  Assuming that the 

contribution of the spectral peak frequency to the relation between frequency 

   

n i
 and the wavelet 

scale 

   

2 i (see Eq. 4.3) is given by a multiplicative factor, then ignoring this contribution (

   

~1) will 

not significantly affect the results discussed in the following sections.  

 

4.4 Computation of the wavelet transform and approximations 

In this paper, the computation of the wavelet transform is based on the lifting wavelet 

transform implemented in Mathematica (version 8.0.1). First generation algorithms developed to 

compute discrete wavelet transform are based on convolution. The lifting wavelet transform is a 

second-generation algorithm using lifting steps to compute the transform (for additional details 

see Sweldens, 1997; Daubechies and Sweldens, 1998; and Jensen and la Cour-Harbo, 2001).   

Finally, we address the issue of computing wavelet transforms of signals with finite 

duration.  As pointed out in Jensen and la Cour-Harbo (2001; p. 2): 
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“But in the real world we always deal with finite length signals.  There are problems at the 

beginning, and at the end, of a finite signal, when one wants to carry out a wavelet analysis of 

such a signal." 

To minimize distortions due to the finite length of the signal, we used Haar wavelets and 

considered signals with 

   

2N values, where 

  

N =16.  This is why the length of the seismic signals 

discussed in the third section is 327.675 seconds:  with  sec. To 

minimize distortions, we also used periodic padding at both ends of the seismic signal. The 

length of the seismic signals used in this work ensures that issues related to the finiteness of the 

signal will have a minimal impact on the results discussed in the next sections. 

 

5. WAVELET TRANSFORM OF GROUND MOTION AND PORE PRESSURE TIME 

SERIES 
 

Using lifting wavelet transforms with the Haar basis, we compute the wavelet coefficients 

of the ground motion and pore pressure recorded at the USGS Wildlife station during the 2010 

Sierra el Mayor-Cucapah earthquake. Wavelet coefficients computed for the pore pressure time 

histories recorded at 3.4 m and the EW component of the ground motion recorded at 3.0 m are 

illustrated in Figures 5.1 and 5.2. For both signals, the time evolutions of the wavelet coefficients 

are illustrated for a range of frequencies that goes from 0.003 to 6.25 Hz.  In both cases, the 

distributions of the wavelet coefficients are neither uniform nor a periodic function of time.  One 

can identify time intervals where the wavelet coefficients have larger amplitudes compared to 

other time intervals. Both signals qualify as intermittent signals. The distributions of the wavelet 

coefficients as a function of frequency and time, illustrated in Figure 5.1, are representative of the 

distributions of the wavelet coefficients observed for pore pressure time histories recorded at 4.37 

m and 5.74 m (see Figure 2.1). The same comment holds for the wavelet coefficients illustrated 

in figure 5.2 and those computed for other ground motions components recorded at identical or 

different depths.  

At low frequencies (from 0.003 to 0.1 Hz) wavelet coefficients of the pore pressure 

illustrated in Figure 5.1 take large values in the first 150 seconds, with maximum values observed 

at 0.006 and 0.012 Hz. This suggests a significant contribution of low frequency oscillations to 

the pore pressure time series during the first 150 seconds.  In the frequency range of 0.1 to 1 Hz, 

the wavelet coefficients contribute significantly to the signal even late in the signal. At higher 

frequencies, larger than 1 Hz, the wavelet coefficients take small values and there is almost no 

modulation of the wavelet amplitudes as a function of time.  

The distribution of wavelet coefficients for the EW component of the ground motion in 

Figure 5.2 is quite different from the distribution of wavelet coefficients of the pore pressure time 

series.  The most significant differences are observed at the low and high frequencies. At low 

frequencies (from 0.003 to 0.05 Hz), the wavelet coefficient values are very small when 

compared to the wavelet amplitudes at frequencies larger than 0.05 Hz.  For frequencies larger 

than 0.05 Hz, wavelet coefficients contribute significantly to the signal, although the time 

dependency varies significantly from one frequency to another.  For instance, large wavelet 

amplitudes are observed early in the signal for frequencies larger than 0.4 Hz, while the largest 

wavelet coefficients are observed later in time for coefficients with frequencies varying between 

0.05 and 0.5 Hz.  The largest wavelet amplitudes are observed at 0.781 and 0.195 Hz   
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Figure 5.1: Examples of computed Haar wavelet coefficients for the pore pressure 

recorded at 3.4m - see also Figure 2.3. The distributions of wavelet coefficients illustrate 

the variability of the signals as a function of frequency as well as the strong time 

dependency.  Note the large amplitudes of the wavelet coefficients of the pore pressure at 

low frequency and early in the signal.  At the corresponding frequencies, the amplitudes 

of the wavelet coefficients associated to the ground motion are close to 0 (see Figure 5.2). 

Wavelet coefficients at high frequencies are not illustrated here. 
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Figure 5.2: Examples of computed Haar wavelet coefficients for the EW component of 

the acceleration recorded at 3m - see also Figure 2.4. Wavelet coefficients at high 

frequencies are not illustrated here. 

 

The distributions of the wavelet coefficients provide meaningful information about the 

pore pressure or ground motion time series.  The interpretation of these distributions is unique to 
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each sample.  It remains difficult to draw any conclusion about the interdependence of the two 

signals under observation (whether the two signals are both pore pressure time series, both 

ground time series, or ground motion and pore pressure time series).  In the next section, we will 

discuss two tools that may help capture and quantify the coupling between two signals and the 

relevance of the coupling. 

 

6. MULTIPLE SCALE ANALYSIS  

6.1 The wavelet correlation and the square norm ratio 

The proper framework to study the interdependence of two intermittent signals at different 

resolutions and/or frequencies is provided by wavelet analysis. Given this framework, we 

propose to combine two concepts to characterize the features shared by a pair of signals while 

taking into account the localization of the feature as well as the relative contribution of these 

features to their respective signals. 

The first concept is the wavelet correlation, which identifies common features in the two 

signals and quantifies a potential linear –or quasi-linear- dependency between the two signals. It 

is given by computing the correlation of the wavelet coefficients as a function of the scale or the 

frequency (Percival and Walden, 2000).  The wavelet correlation 
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d i g( ) are respectively the means of the wavelet coefficients 
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2 i. The wavelet correlation defined in Eq. (6.1) takes values between -

1 and 1.  

Note that the wavelet correlation is not a generalization of the lagged cross-correlation (or 

its counterpart in the frequency domain the cross-spectrum discussed in Section 3). The lagged 

cross-correlation between the two signals 

   

f  and 

   

g with lag 

   

t is given by 

   

g t( )ò f t +t( )dt  and 

quantifies the likelihood to find common features between 

   

f  and 

   

g separated by an interval 

   

t. 

The wavelet correlation quantifies the likelihood to find common features between 

   

f  and 

   

g as a 

function of scale, but around the same time interval! The concept of lagged (or delayed) wavelet 

correlation is closer to the concept of lagged cross-correlation.  

Wilkinson and Cox (1996) compute the lagged wavelet correlation for the wavelet 

coefficients of two signals at two specific scales. In their paper, the authors use Daubechies 

wavelets to compare two signals generated by turbine vibrations. A similar concept of lagged 

wavelet cross-correlation is also discussed in van Milligen (1999) for continuous wavelets with 

application to plasma. In Eq. (6.1), the lag is set to 0. The expression in Eq. (6.1) can also be seen 

as a generalization of the concept of scale correlation, as defined for a single signal in Addison et 
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al. (2001).  Using the wavelet framework, and based on the concept of correlations, different 

tools have been discussed in the literature to compare two signals (e.g.: Liu, 1994; Torrence and 

Compo, 1998; van Milligen, 1999; Addison, 2002; Papanicolaou and Solna, 2003; Misiti et al., 

2007; and Adamowski, 2008). 

The wavelet correlation provides a quantitative measure that describes the common 

features shared by two signals at a given scale 

   

2 i.  To complement this measure, it is also 

necessary to quantify the contribution of these features to their respective signals.  For this 

purpose, a second concept is used. The square norm ratio quantifies the relative strength or 

weight of wavelet coefficients at a given scale to the total strength of the signal. It identifies the 

contribution of the most dominant wavelet coefficients necessary to reconstruct the signal. The 

square norm ratio 
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where 

   

NS
 is the number of scales used in the wavelet decomposition. (For a signal with 

   

2N 

values 

   

NS = N.) Note that the denominator in Eq. (6.2) is equal to the square norm of the signal 

   

f
2
, since the wavelet decomposition is computed with an orthogonal wavelet basis. 

By combining the information given by the wavelet correlation and the square norm ratio, 

one can identify the strength of properties shared by a pair of signals. Note also that although 

both concepts, the wavelet correlation and the square norm ratio, are defined as a function of the 

scale, they can easily be given as a function of the frequency by using Eq. (4.4). 

 

6.2 Evaluation of the wavelet correlation performance 

According to the definition of the wavelet correlation in Eq. (6.1), the number of events in 

the sum is a function of the scale 

   

2 i.  The number of values at a given scale decreases rapidly as 

the scale level 

   

i increases or as the frequency 

   

n i
 decreases (see Eq. 4.4). When estimating the 

robustness of a statistical parameter, the larger the number of values used in computing the 

parameter, the more accurate is the estimate. It is assumed that convergence to the “real” estimate 

of a statistical parameter is achieved when the number of values to compute the statistical 

parameter is large enough. Thus, to assess the performance and robustness of the wavelet 

correlation values computed at a given scale (or frequency), the following numerical experiment 

is designed. 

1. Generate 500 independent stochastic time series with a number of events identical 

to the number of events in the acceleration or pore pressure time series. The 

stochastic time series consists of a Gaussian white noise with mean equal to 0 and 

standard deviation equal to 1. 

2. For each stochastic time series, compute the wavelet correlation between the 

stochastic time series and the EW component of the acceleration recorded at 0 m. 

3. At each given frequency, compute the mean for the 500 wavelet correlation values. 
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4. At each given frequency, compute the standard deviation for the 500 wavelet  

correlation values. 

 

The results of the computation discussed above are illustrated in Figure 6.1.  The mean 

wavelet correlations are close to 0 at every frequency, and thus frequency independent. The 

standard deviation for the multiple scale correlation, represented by the brown area in Figure 7, 

decreases with the frequency value.  Similar results are obtained when performing the same 

numerical experiments with other seismic signals in place of the EW component of the 

accelerations.  The result is illustrated for the pore pressure time series in Figure 6.2.  The same 

results are also obtained when repeating the same computation for 1000 independent stochastic 

time series.  

Based on these results, we propose the adoption of the following rule to assess the 

robustness or reliability of the wavelet correlation values for two signals computed at a given 

frequency. For two signals, a wavelet correlation value that is within one standard deviation value 

of the wavelet correlation value estimated in this section performs as well “in average” as a 

wavelet correlation for a Gaussian white noise and one of the two signals. That is, the cross-

correlation value cannot be discriminated “in average” from the cross-correlation between a 

Gaussian white noise and one of the two signals. A wavelet correlation value that is outside one 

standard deviation value of the wavelet correlation value estimated in this section is considered a 

significant and meaningful estimate of the cross-correlation. The standard deviation reported in 

Figure 6.1 is used as a reference for all the seismic signals discussed in the next section. 

 

 
 

Figure 6.1: Computation of the mean for the 500 multiple scale correlation values 

between a stochastic time series and the EW component of the acceleration. The mean 

correlation is near 0 at every frequency. At every scale, the brown area corresponds to the 

range of values located between plus-or-minus the standard deviation for the 500 multiple 

scale correlation values between a stochastic time series and the EW component of the 

acceleration. The vertical size of the brown area decreases with the frequency.  

Statistically, it is much more difficult to estimate the degree of linearity between two 

signals at low frequency.  
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Figure 6.2: Same as Figure 6.1 but for the pore pressure time history. 

 

7. WAVELET CORRELATION AND SQUARE NORM RATIO OF SEISMIC SIGNALS. 

In this section, we discuss the computation of the wavelet correlation and the square norm 

ratio of the ground motion and pore pressure recorded at the USGS Wildlife station during the 

2010 Sierra el Mayor-Cucapah earthquake.  The computations are performed for different sets of 

seismic signals.  

In addition to the recorded acceleration and pore pressure, we also include the ground 

motion velocity and the displacement in our analysis.  Velocities and displacements are computed 

with numerical integration of the acceleration records.  The acceleration records are filtered in 

Matlab with a Butterworth filter that has a pass band from 20 sec to 50 Hz. The mean is removed 

from the signal before each integration is performed.  

 

7.1 Ground motion time series 

The first set includes the EW components of the acceleration recorded at different depths , 

see Figure 2.4. The correlations between the wavelet coefficients of the EW components of the 

acceleration recorded at different depths are shown in Figure 7.1A.  The corresponding square 

norm ratios are in Figure 7.1B.  The curves in Figure 7.1A show that the wavelet coefficients are 

highly correlated for frequencies less than or equal to 3.125 Hz, with a small departure from this 

behavior observed at 0.024 Hz.  For frequencies larger than 3.125 Hz, the correlation decreases 

quickly to zero as the frequency increases.  

The sudden change in the wavelet correlations reported in Figure 7.1A can be understood 

in terms of wave propagation. As the seismic waves travels across the layered medium, 

oscillations shift in the time domain.  Assuming plane waves propagating in the vertical direction, 

the amount of time shift between plane waves recorded at two instruments located at different 

depths can be estimated by computing the ratio between the distance separating the two 

instruments and the average shear-velocity in the layered medium.  The frequency corresponding 
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to the amount of shift is thus given by the ratio between the average shear-velocity in the layered 

medium and the distance separating the two instruments. 

 

A

 

B

 

 

Figure 7.1: A. Computation of the wavelet correlation between the wavelet coefficients 

of the EW components of the acceleration recorded at different depths -see Figure 2.3.  

Except for high frequencies, the wavelet coefficients are well correlated and thus largely 
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independent of the depth.  Note that the correlation between the component recorded at a 

depth of 0 m and the component recorded at a depth of 7.7 m (diamond shape symbols) 

asymptotes more quickly to 0 than the correlation between the component recorded at a 

depth of 0 m and the component recorded at a depth of 3 m (cross symbols). The meaning 

of the brown areas in the left plot is discussed in Section 6. B. Computation of the square 

norm ratio for the three EW components of the acceleration recorded at different depths. 

The distribution of the square norm ratio is largely independent of the depth at which the 

ground motion was recorded. 

 

For the USGS Wildlife station (see Figure 1), SCPT logs indicate that the shear wave 

velocity varies from 100 m/sec at the surface to a maximum value of 170 m/sec at 7.5 m depth, 

with average values on the order of 130 m/sec (data from site testing are available at 

http://www.nees.ucsb.edu/facilities/wla).  The frequencies corresponding to these values for 

station separated by a 7.7 m distance are respectively 13 Hz, 22.1 Hz and 16.9 Hz.  In Figure 

7.1A, the correlation between wavelet coefficients at 0 m and at 7.7 m reach a value close to 0 at 

12.5 m and remains close to 0 for higher frequency values.  

Wavelet coefficients at a given scale and location are computed for a finite time interval 

or time window.  The time window at a given scale is  with a Fourier frequency 

   

n i
 (see Eq. 

4.4).  The duration of the time window is the distance between two consecutive vertical bars in 

Figures 5.1 and 5.2. For a given location and for a large time window, the wavelet coefficients 

estimated at 0 m and 7.7 m are almost the same since the average time shift (~ 1/16.9 Hz~0.6 sec) 

of the wave as it travels over a distance of 7.7 m is very small compared to the duration of the 

time window.  The situation is different for small time windows (or high frequencies) with 

durations similar to or smaller than the amount of shift due to the wave travelling between the 

two stations.  For a given location, the estimated wavelet coefficients at 7.7 m are based on 

oscillations that are largely or completely shifted to another time window when these oscillations 

are recorded at 0 m. Thus, for a given location and for a small time window, the wavelet 

coefficients estimated at 0 m and 7.7 m are based on oscillations that are significantly or 

completely different from the others. For these small windows (high frequencies), the wavelet 

coefficients at 0 m and 7.7 m are poorly correlated, which is the situation depicted by the curves 

in Figure 7.1A. Note that, as expected, the correlation curve for the wavelet coefficients 

corresponding to the acceleration recorded at a larger distance (0 m versus 7.7 m) decreased more 

rapidly when compared to the correlation for the wavelet coefficients corresponding to the 

acceleration recorded at a closer distance (0 m versus 3 m). 

 The distributions of the square norm ratios are described by well-localized functions 

similar in shape. The curve corresponding to the acceleration recorded at 0 m has a single 

maximum and can be represented by a unimodal function. For frequencies less than or equal to 

1.563 Hz, the square norm ratios are systematically attenuated as the depth of the observation 

decreases. For frequencies larger than or equal to 6.25 Hz, the square norm ratios amplified as the 

depth decreases.  

The correlations between the wavelet coefficients of the NS components of the 

acceleration recorded at different depths are shown in Figure 7.2A.  The corresponding square 

norm ratios are in Figure 7.2B.  The functional behavior of the curves in Figure 7.2A is similar to 

Figure 7.2B. The distributions of the square norm ratios are also described by well-localized 

functions, although with a more complicated functional behavior than the distributions reported 

for the EW components in Figure 7.1A. Attenuation of the square norm ratios at low frequencies 
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as the depth decreases and amplification at higher frequencies as the depth increases is also 

observed in Figure 7.2B. 

 

A

 

B

 

 

Figure 7.2: Same as Figure 7.1 but for the NS components of the acceleration. 
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Figure 7.3: Same as Figure 7.1 but for the vertical components of the acceleration. 

 

The correlations between the wavelet coefficients of the vertical components of the 

acceleration recorded at different depths are reported in Figure 7.3A.  The corresponding square 

norm ratios are in Figure 7.3B.  In Figure 7.3A, the correlation curves decrease at a slower pace 

at higher frequencies than the sharp attenuation reported in Figures 7.1A and 7.2A.  Vertical 
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components are travelling with a P-wave velocity that is higher than shear wave velocity and will 

thus have a greater impact on the correlation curves at higher frequencies.  For the vertical 

components, the distributions of the square norm ratios extend over a larger range of frequencies 

than the range reported in Figures 7.1B and 7.2B. Attenuation of the square norm ratios at low 

frequencies as the depth decreases and amplification at higher frequencies as the depth increases 

is also observed in Figure 7.3B. 

A

 

B

 

Figure 7.4: Same as Figure 7.1 but for the NS components of the velocity. 
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Figure 7.5: Same as Figure 7.1 but for the vertical components of the displacement. 
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Figure 7.6: Same as Figure 7.1 but for the pore pressure. 
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Figure 7.7: A. Computation of the wavelet correlation between the wavelet coefficients 

of the pore pressure and the wavelet coefficients of each component of the acceleration 

recorded at a similar depth (~3 m). B. The distribution of the wavelet coefficient of the 

acceleration are shifted to the high frequencies when compared to the distribution of the 

wavelet coefficient of pore pressure.  Note the significant values of the square norm ratio 
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of the pore pressure at low frequencies with no correspondence for the square norm ratio 

of the acceleration components. 

 

A
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Figure 7.8: Same as Figure 7.7 but for the velocity components at a similar depth (~3 m). 
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Figure 7.9: Same as Figure 7.7 but for the displacement components at a similar depth 

(~3 m). 

 

Computations of the wavelet correlations and the square norm ratios for the three velocity 

components are rather similar. The same conclusion holds for the three displacement 

components. For this reason, we will only report the results for the NS component of the velocity 
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in Figure 7.4 and the results for the vertical components in Figure 7.5. The curves in Figure 7.4A 

show that the wavelet coefficients are highly correlated for all the frequency ranges.  This result 

is not surprising since computation of the velocity and the displacement removes the high 

frequency components from the signal. The distributions of the square norm ratios illustrated in 

Figure 7.4B are quasi identical, and thus largely independent of the depth of the recording. These 

distributions are well described by a unimodal function with a maximum at 0.195 Hz. The same 

conclusions hold for the results illustrated in Figure 7.5.  The results in Figure 7.4 and 7.5, which 

are similar to the other components of the velocity and of the displacement, suggest that, with the 

exception of small fluctuations, the velocity time histories and the displacement time histories are 

almost independent of the depth of the recording.  

 

7.2 Pore pressure time series 

In this sub-section, we consider the pore pressure time histories recorded at different 

depths, see Figure 2.3. The correlations between the wavelet coefficients of the pore pressure 

recorded at different depths are shown in Figure 7.6A.  The corresponding square norm ratios are 

in Figure 7.6B. Except for the correlation at 0.024 Hz and 0.049 Hz, the wavelet coefficients are 

well correlated, with values close to 1. The values of the square norm ratios at 0.024 Hz and 

0.049 Hz are very small, so departure from the behavior observed at other frequencies in Figure 

7.6A can be ignored.  The distributions of square norm ratios are characterized by large values at 

mid-range frequencies (frequencies between 0.195 Hz and 1.563 Hz) and at low frequencies 

(frequencies between 0.003 Hz and 0.012 Hz). In the mid-range frequencies, the shape of the 

distributions are similar from one depth to another.  The shape corresponds to a unimodal 

function with a large jump at 0.195 Hz, a maximum observed at 0.395 Hz, and an attenuation at 

higher frequencies. At low frequencies, the distributions of square norm ratios strongly depend 

on the depths at which the pore pressure is recorded. Note that the large wavelet coefficients 

characterize are localized in the first half of the pore pressure time history (see Figure 5.1).  

The distributions of the square norm ratio values for the pore pressure (figure 7.6) are 

quite different from those reported in Figures 7.1 to 7.5 for ground motions. The question is to 

determine the likelihood of a causal mechanism that relates the seismic waves and the variations 

observed in the pore pressure time histories that can be inferred from the wavelet decomposition.  

 

7.3 Mixed seismic signals recorded at 3 m. 

In this sub-section, we consider three data sets that include the pore pressure time 

histories recorded at 3.4 m and the three components of the ground motions recorded at 3 m, see 

Figures 2.3 and 2.4.  We select data recorded at similar depths (~3 m) to minimize the depth 

dependence discussed in the two previous sub-sections.  

The correlations between the wavelet coefficients of the pore pressure and the three 

components of the acceleration are shown in Figure 7.7A.  The corresponding square norm ratios 

are in Figure 7.7B. The functional behavior of the correlation curves reported in Figure 7.7A is 

more complicated than the behaviors reported in Figures 7.1A to 7.6A.  At high frequencies 

(frequencies between 3.125 Hz and 100 Hz), the correlations between the wavelet coefficients of 

the pore pressure and the wavelet coefficients of the vertical component of the acceleration 

increase with the frequency.  At the corresponding frequencies, Figure 7.7B shows that the square 

norm ratio for the pore pressure is close to zero. At frequencies ranging from 0.012 Hz to 0.098 

Hz, the EW components exhibit (in absolute value) the largest correlation with the pore pressure 
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wavelet coefficients. Also at the corresponding frequencies, Figure 7.7B shows that the square 

norm ratio for the three acceleration components is almost zero. Again, under the assumption of a 

linear or quasi-linear dependency between the pore pressure and the components of the 

acceleration, the large fluctuation observed in the distribution of the square norm ratio of the pore 

pressure at low frequencies (smaller than 0.024 Hz) can only result from a mechanism that will 

largely amplify the very small oscillations present in the ground motion to generate large 

fluctuations in the pore pressure at these low frequencies.  This mechanism would have to be 

frequency dependent, since in the mid-range frequencies (frequencies ranging between 0.195 Hz 

and 1.563 Hz), the distribution of the square norm ratios for the pore pressure and the 

acceleration components are of the same order of magnitude. 

Considering the mid-range frequencies (frequencies ranging between 0.195 Hz and 1.563 

Hz), the acceleration component with the highest correlation with the pore pressure depends on 

the frequency.  In this frequency range, the distribution of the square norm ratios for the pore 

pressure and the acceleration components take all significant values.  The distribution of square 

norm ratios for the pore pressure has a maximum at 0.391 Hz and decreases rapidly at higher 

frequencies while the distribution of square norm ratios associated with the acceleration have 

maxima at larger frequencies of 0.781 Hz or 1.563 Hz.  Note that at 1.563 Hz, the correlation 

between the pore pressure and the three components of the acceleration is close to 0. In other 

words, the bulk of the distribution of the square norm ratios associated with the acceleration 

components are out of frequency phase with the bulk of the distribution of the square norm of the 

pore pressure located in the mid-frequency range. Explanation of the distribution of the square 

norm of the pore pressure as a consequence of the distribution of the square norm-ratios of the 

acceleration components may require a nonlinear mechanism. This hypothesis will require 

additional investigations that are beyond the application of the tools discussed in this section.  

The correlations between the wavelet coefficients of the pore pressure and the three 

components of the velocity are shown in Figure 7.8A.  The corresponding square norm ratios are 

in Figure 7.8B. Both the wavelet correlations and the square norm ratios take small values at high 

frequencies ranging from 3.125 Hz to 100 Hz. At lower frequencies, significant correlation 

values are observed at 0.024 Hz and 0.048 Hz, but at these frequencies the corresponding values 

for the square norm ratios are very small for all the seismic signals.      

For the mid-range frequencies (frequencies ranging between 0.195 Hz and 1.563 Hz), the 

vertical velocity component has the highest correlation (in absolute value) with the pore pressure. 

Over the same range, the distributions of the square norm ratios for the pore pressure and the 

vertical velocity component have the same functional behavior: they are both described by 

unimodal functions with maxima at 0.391 Hz and an attenuation at larger frequencies. The 

vertical component appears to be a good candidate under the assumption of a linear or quasi-

linear dependency between the pore pressure and ground velocity. Note that if we consider the 

frequency range from 0.391 Hz to 1.563 Hz, the results in Figure 7.8 suggest that the EW and NS 

components of the velocity may also be potential candidates.  Over the same frequency range, the 

correlation between the wavelet coefficients of the EW or NS components and the wavelet 

coefficients of the pore pressure is smaller in absolute value when compared to the correlation 

between the vertical component and the pore pressure. 

The last data set discussed in this sub-section includes the pore pressure time histories 

recorded at 3.4 m and the three components of the displacement recorded at 3 m, see Figures 2.3 

and 2.4. The correlations between the wavelet coefficients of the pore pressure and the three 

components of the displacement are shown in Figure 7.9A.  The corresponding square norm 

ratios are in Figure 7.9B.  At high and low frequencies, the situation is similar to the situation 
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involving the pore pressure and the velocity components and will not be discussed further since 

the same conclusions can be deduced.  In the frequency range of interest for the pore pressure, 

0.195 Hz to 1.563 Hz, the distributions of the square norm ratio for the displacement is also a 

unimodal function. Unlike the distribution of the square norm ratio for the pore pressure, the 

maximum is located at 0.195 Hz. In this frequency range, the wavelet correlation values between 

the pore pressure and the vertical component of the velocity reported in Figure 7.8A are larger 

than those reported in Figure 7.9A. 

According to the assumption of a linear or quasi-linear dependency between the pore 

pressure and the ground motion, the most likely candidate to account for the variability of the 

pore pressure time histories in the frequency range going from 0.195 Hz to 1.563 Hz is the 

vertical velocity. This result is supported by the first-order model proposed by Mavko and Harp 

(1984), as well as inferences derived from data analysis discussed in Midoriwaka and Wakamatsu 

(1988), Kostadinov and Towhata (2002), Wang and Manga (2010). Note that here, the linear or 

quasi-linear relationship between the pore pressure and the vertical velocity holds only for a finite 

frequency sub-range of all the frequencies available. Furthermore, contributions from the 

displacement components or the EW and NS velocity components cannot be disregarded 

although their contribution should be less important than the contribution due to the vertical 

velocity. According to the curves shown in Figures 7.7A and 7.7B, small fluctuations in the pore 

pressure data at high frequencies are likely caused by the vertical component of the acceleration.  

 

7.4 Pore pressure anomaly at low frequencies. 

In this sub-section, we discuss the large values of the square norm ratio of the pore 

pressure observed at low frequencies (see Figure 7.6) and focus on the results obtained at 0.012 

Hz. At a frequency of 0.012 Hz, the wavelet coefficients of the three pore pressure signals 

contribute about 20% of the total signal (see Figure 7.6B). These wavelet coefficients are 

localized early in the signal (see Figure 5.1) and are well correlated across the “sandy silt to 

sand” layer (see Figure 7.6A). 

When comparing the recorded pore pressure at 3.4 m to ground motion recorded at 3 m at 

0.012 Hz frequency, there are no reliable estimates of correlation (as defined in sub-section 6.2) 

between the wavelet coefficients of the pore pressure and the wavelet coefficients of the ground 

motion components (see Figure 7.7A to 7.9A) except for the vertical displacement (Figure 7.9A). 

At this frequency, the square norm ratio of the vertical displacement is close to 0 (Figure 7.9B). 

Generation of the large fluctuations in the wavelet coefficients of the pore pressure at low 

frequencies will require a mechanism that locally, in the frequency-time domain, induces a 

significant amplification of the causal seismic wave that is not observed at other frequencies.  

Thus, based on our analysis, there is no linear or quasi-linear dependency between the 

pore pressure and the ground motion that can account for the large wavelet coefficients of the 

pore pressure at low frequencies.  Nonlinear mechanisms and/or geometrical properties specific 

to the “sandy silt to sand” layer may be responsible for the behaviors observed at the low 

frequencies. Further investigations are needed to determine if the large values of the square norm 

ratios of the pore pressure observed at low frequencies can be considered an anomaly. 
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8. DISCUSSION AND FUTURE DIRECTIONS 

In the previous section, we used the wavelet correlation and the square norm ratio to 

investigate a potential linear or quasi-linear dependency between the pore pressure and the 

ground motion components in the frequency-time domain.  The discussion in the previous section 

shows that the wavelet correlation and square norm ratio are mutually complementary.  

Extraction of qualitative and quantitative information about common features between the pore 

pressure and the ground motion components is simplified when compared to a similar task using 

traditional tools such as the cross-spectrum (see Section 3). 

Although the method discussed in Sub-section 6.2 provides some basis to assess the 

reliability of the wavelet correlation, the procedure discussed in Section 6 and the results 

presented in Section 7 are not without limitations.  The analysis and the results are based on a 

wavelet decomposition computed with the Haar basis.  In principle, other orthogonal wavelet 

bases can be considered for analysis: Daubechies wavelet of order n (n integer larger than 0), 

Coiflet wavelet of order n (n integer with 

  

1 £ n £ 5), and Symlet wavelet of order n (n integer 

larger than 0).  Choosing the wavelet family is not an easy task and trying all, or a significant 

number of, the available wavelet bases can be a rather cumbersome and time-consuming 

investigation.  This task can be simplified by adopting some criteria to select the wavelet basis.  

One criterion discussed in the literature consists of selecting the wavelet family by optimizing an 

entropy measure such as the Shannon entropy discussed in Addison (2002). The basic idea of this 

procedure is to select a wavelet decomposition with a minimal number of non-zero wavelet 

coefficients.  A small number of wavelet coefficients accounts for all the variability embedded in 

the signals. 

A direct extension to the results reported in Section 7 will consist of computing the lagged 

wavelet correlations of the seismic signals. Applications of lagged wavelet correlation are 

discussed in Wilkinson and Cox (1996), van Milligen (1999), and van den Berg (1999). The lag 

in the time domain will add a third dimension to the correlation analysis.  This third dimension 

may provide a means to quantify features shared by a pair of signals but delayed in time. These 

features may be scale or frequency dependent and thus best quantified by using wavelet 

decomposition.  Note that these computations can only be performed on wavelet coefficients in 

the mid-range or high frequency intervals to insure that the number of wavelet coefficients is 

large enough to compute the lagged cross-correlation at the corresponding scale (for examples 

see Wilkinson and Cox, 1996). 

Analysis up to now has focused on quantifying common features in two different signals 

as a function of scale or frequency. The quantification is based on computing the correlation or 

the lagged cross-correlation. Computing only the correlation will miss some of the key features 

relating the two signals.  For instance, describing the relative occurrence of large values in the 

pore pressure time histories and how they compare to the relative occurrence of large values in 

the ground motion time histories requires further analysis. Computations of the distributions, or 

of distribution-derived parameters, are best estimated for white or quasi-white noise. Figures 3.2 

and 3.3 clearly show that the spectra of both the recorded pore pressure and ground motion are 

frequency dependent. This indicates that each of these time series is auto-correlated, since the 

spectrum of white noise is flat. One important property of the wavelet transforms is that they tend 

“to simplify the dependence structure of the original data”, to whiten or decorrelate the original 

signal (Vidakovic, 1999, p. 18; and references therein). Or, as indicated by Kumar and Foufoula-

Georgiou (1997, p. 386), “… although fractional Brownian motion is a nonstationary, and 
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infinitely correlated process, its wavelet coefficients are stationary and practically uncorrelated.”  

As a first step, deciphering the distributions of the wavelet coefficients of the pore pressure and 

the ground motion will require the computation of the skewness factor and flatness factor of their 

respective wavelet coefficients as a function of the scale or the frequency (Meneveau, 1991; 

Schneider and Farge, 2001; Addison, 2002). The skewness factor and flatness factor are used in 

the study of turbulent flow to determine deviation of the distribution of the wavelet coefficients 

from a Normal distribution.  If the estimate of these factors shows that the wavelet coefficients 

are not distributed according to a Normal distribution, a further step will consist in estimating the 

distribution of the wavelet coefficients at different scales and matching the computed 

distributions with theoretical probability laws.  Of particular interest will be to compare with 

probability laws used to describe the distribution of peak ground acceleration (PGA) and peak 

ground velocity (PGV), see Abrahamson (1988), Gusev (1989; 1996), Lavallée and Archuleta 

(2005), Lavallée (2008), Yamada et al. (2009), Huyse et al. (2010), and Lavallée et al. (2011). 

 

9. CONCLUSION 

The 2011 Tohoku-oki –officially renamed Higashi Nihon Daishinsai- (Japan) is the most 

recent example of liquefaction resulting from earthquake induced pore pressure fluctuation. 

Liquefaction is a common result of earthquakes and capable of causing considerable damage 

(e.g., Seed and Idriss, 1971; Wang and Manga, 2010). The causative mechanism responsible for 

liquefaction is closely related to earthquake excitation. Currently, there are very few sites that are 

equipped with instruments to monitor simultaneously both pore pressure and ground motion. In 

view of mitigating the hazard associated with liquefaction, it is imperative to understand the 

complex relationship between pore pressure data and ground motion (see Wang and Manga, 

2010). Such relations can be applied to sites and areas where there is no record of excess pore 

pressure, but where ground motion data are available to complement the design of liquefaction 

probability curves (Holzer et al., 2009 and references therein). 

In this paper, we discussed tools that can provide insights about the complex relationship 

between pore pressure data and ground motion. The tools are based on wavelet decomposition.  

Wavelet-derived tools are designed to properly analyze signals with an intermittent frequency 

content (see Figures 2.3 and 2.4). The tools consist in computing the wavelet correlation and the 

square norm ratio of the two signals under investigation. Wavelet correlation quantifies the 

degree of linear or quasi-linear dependence between the two signal wavelet coefficients as a 

function of the frequency. The square norm ratios complement the information provided by the 

wavelet correlation by weighting the relative contribution of the wavelet coefficients to the 

signals as a function of the frequency. In Section 7, we discussed the computations of the wavelet 

correlation and the square norm ratios for different sets of two seismic signals. In this paper, we 

considered pore pressure time histories and acceleration time histories recorded at the USGS 

Wildlife station during the 2010 Sierra el Mayor-Cucapah earthquake. 

A first significant result is obtained by computing the correlation of the wavelet 

coefficients associated with the horizontal components of the acceleration recorded at different 

depths.  The curve of the wavelet correlation as a function of the frequency shows a sudden jump 

in the high frequency range. The jump can be explained in terms of independent measurements of 

the shear wave velocity.  Furthermore, this result can be understood as a validation of the 

wavelet-derived tools used in this paper. Another significant result discussed in Section 7 is the 
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observation of a range of frequencies where wavelet coefficients of pore pressure are relatively 

well correlated to the wavelet coefficients of the vertical component of the velocity, while the 

estimated square norm ratios of both wavelet coefficients follow a similar unimodal curve with 

maxima located at the same frequencies.  This finding may provide a basis for quantifying and 

modeling the complex relationship between the pore pressure and the ground motion in the 

frequency-time domain.  

The tools discussed in this paper may also be helpful in addressing another question. In 

the book “Quantitative Seismic Interpretation” by Avseth et al. (2005, p. 42), the authors write 

“Cuttings, cores, and logs tell us about the lithology, porosity, permeability, and fluids. And 

assuming that there is a good tie between seismic and synthetics, we may even say that we 

understand the seismic data at the well. The problem is, often, knowing what happens when 

moving away from the well.” Answering this question is fundamental when comparing time 

series recorded by portable stations to time series recorded by in situ stations (Cochran et al., 

2011). It is also fundamental for the dissemination of current and next generation seismic 

instrumentation, including borehole instrumentation. Understanding spatial variations of ground 

motion is important in both seismology and earthquake engineering (Kramer, 1996; and Field and 

Hough, 1997). In Section 7.1 and 7.2, we provide some answers to the question raised by Avseth 

et al. (2005, p. 42). The procedure discussed in this paper can be used to compare seismic signals 

recorded at different locations, or at different depths, with similar geological environments and to 

quantify the common features shared by the seismic signals as a function of frequency. Boreholes 

are drilled and instrumented to provide direct measurements of ground motion during an 

earthquake. These recorded ground motions are the basis for predicting ground shaking at other 

locations with similar geological settings. Our tools will be useful to improve the reliability of 

those predictions. 
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